
HYBRID DIFFERENTIAL EVOLUTIONARY SYSTEM FOR TIME SERIES PREDICTION

RICARDO DE A. ARAÚJO∗, GERMANO C. VASCONCELOS∗, TIAGO A. E. FERREIRA∗

∗Center for Informatics � Federal University of Pernambuco
Av. Prof. Luiz Freire, s/n, CDU, 50732-970, Recife - PE - Brazil.

Emails: raa@cin.ufpe.br, gcv@cin.ufpe.br, taef@cin.ufpe.br

Abstract� This paper presents a Hybrid Differential Evolutionary System (HDES) for time series forecasting. It consists of
an intelligent hybrid model composed of an Arti�cial Neural Network (ANN) combined with an Improved Differential Evolution
(IDE). The IDE searches for the relevant time lags for a correct time series characterization, the number of processing units in the
ANN hidden layer, the ANN training algorithm and the modeling of ANN. Initially, the proposed HDES chooses the most �tted
forecasting model, thus it performs a behavioral statistical test in the attempt to adjust forecast time phase distortions that appear
in some time series. An experimental analysis is conducted with the proposed HDES using three real world time series and �ve
well-known performance measures are used to assess its performance. The obtained results are compared to MultiLayer Perceptron
(MLP) networks and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) method.
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1 Introduction

The development of models for time series forecast-
ing is considered a rather dif�cult problem. In or-
der to solve such problem, many efforts have been
made to the development of models and techniques
able to forecast the future based on present and past.
The popular statistical technique of Box-Jenkins (Box
et al., 1994) is considered one of the most common
choices for the prediction of time series. However,
since the Box-Jenkins models are linear and most real
world applications involve nonlinear problems, it is
very dif�cult the Box-Jenkins models to capture the
generator phenomenon of the nonlinear time series
and this introduces a limitation to the accuracy of the
generated predictions.

In order to overcome this limitation, nonlinear
statistical approaches have been proposed, such as the
bilinear models (Rao and Gabr, 1984), the threshold
autoregressive models (Ozaki, 1985), the exponen-
tial autoregressive models (Priestley, 1988), the gen-
eral state dependent models (Rumelhart and McCle-
land, 1987), amongst others. However, these nonlinear
statistical models have high mathematical complexity
and, in the practical applications, similar performance
to linear statistical models (Clements et al., 2004).

In this way, approaches based on Arti�cial Neu-
ral Networks (ANNs) have been successful applied for
nonlinear modeling of time series (Zhang et al., 1998).
In this context, a relevant work was presented by Fer-
reira (Ferreira, 2006; Ferreira et al., 2007). It con-
sists of the Time-delay Added Evolutionary Forecast-
ing (TAEF) method de�nition for time series fore-
casting, which performs an evolutionary search (us-
ing a Modi�ed Genetic Algorithm (MGA) (Leung
et al., 2003)) for the minimum necessary number of
dimensions corresponding to the problem of determin-
ing the characteristic phase space of the time series,
based on the Takens Theorem (Takens, 1980). The
TAEF method (Ferreira, 2006; Ferreira et al., 2007)
�nds the most �tted predictor model for representing a
time series, and then performs a behavioral statistical
test in order to adjust forecast time phase distortions
that may appear in the representation of some time se-
ries.

This paper presents a Hybrid Differential Evo-
lutionary System (HDES) for time series forecast-
ing. The proposed HDES is inspired on Takens The-

orem (Takens, 1980) and consists of an intelligent hy-
brid model composed of an Arti�cial Neural Network
(ANN) combined with an Improved Differential Evo-
lution (IDE) (Araújo et al., 2007) (using modi�ed op-
erators in order to accelerate its convergence speed).
The IDE searches for the relevant time lags for a cor-
rect time series characterization, the number of pro-
cessing units in the ANN hidden layer, the ANN train-
ing algorithm and the modeling of ANN. After train-
ing model, the proposed HDES, based on the TAEF
method (Ferreira, 2006; Ferreira et al., 2007), chooses
the most tuned prediction model for time series rep-
resentation, thus it performs a behavioral statistical
test (Ferreira, 2006; Ferreira et al., 2007) in the attempt
to adjust forecast time phase distortions that appear in
some time series.

Furthermore, an experimental analysis is con-
ducted with the proposed HDES using a �nancial
time series (Standard & Poor 500 (S&P500) Index)
and two natural phenomena time series (Sunspot and
Brightness of a Variable Star Series). Five well-
known performance measurements are used to as-
sess performance of the proposed method and the ob-
tained results shown better performance of the pro-
posed HDES when compared to MultiLayer Percep-
tron (MLP) networks and the previously introduced
TAEF method (Ferreira, 2006; Ferreira et al., 2007).

2 The Time Series Forecasting Problem

A time series, in its simplest form, is a set of points
generally time equidistant, de�ned by,

Xt = {xt ∈ R | t = 1, 2, . . . , N}, (1)

where t is the temporal index and N is the number of
observations. So, Xt will be seen as a set of temporal
observations of a phenomenon, orderly sequenced and
equally spaced.

The main objective when applying forecasting
techniques to a given time series is to identify cer-
tain regular patterns present in the data set in order
to create a model capable of generating the next tem-
poral patterns. In this context, a crucial factor for a
good forecasting performance is the correct choice of
the time lags considered for the representation of the
given time series. Such relationship structures among
historical data constitute a d-dimensional phase space,



where d is the dimension capable of representing such
relationship. Takens (Takens, 1980) proved that if d
is suf�ciently large, such built phase space is homeo-
morphic to the phase space which generated the time
series.

In this way, it is concluded that a crucial problem
in reconstructing the original state space is the correct
choice of the variable d, or more speci�cally, the cor-
rect choice of the time lags.

3 The Improved Differential Evolution

In this section, it is introduced the Improved Differ-
ential Evolution (IDE) (Araújo et al., 2007). It uses
speci�cs DE operators (mutation and crossover) in or-
der to explore the state space more ef�ciently and to
enhance convergence speed. The IDE procedure is il-
lustrated in Figure 1.

begin IDE0.1
G = 0;0.2
initialize xG; // xG: population at generation G0.3
evaluate f (xG); // f (·): �tness fucntion0.4
while not termination condition do0.5

xG+1 = xG;0.6
select an aleatory individual (xk,G) from0.7
population xG;
begin mutation operator0.8

generate the mutated individuals m1, m2,0.9
m3, m4 and m5 by Equations (3)-(7);
the son with the best �tness function is0.10
denoted vi,G+1;

end0.11
begin crossover operator0.12

generate the crossover individuals c1, c2, c30.13
and c4 by Equations (8)-(11);
the son with the best �tness function is0.14
denoted ui,G+1;

end0.15
begin selection operator0.16

generate xk,G+1 by Equation (12));0.17
end0.18
G = G + 1;0.19

end0.20
end0.21

Figure 1: IDE procedure.

Each IDE individual is evaluated by a de�ned �t-
ness function (or cost function). In this way, better
chromosomes in IDE population will have high �t-
ness function values. Hence, a possible �tness func-
tion de�nition is given by (Araújo et al., 2007)

fitness function =
1

1 + |min− f(xS,G)| , (2)

where f(·) is an heuristic function and min denotes
the minimum function value. It is worth to mention
that the �tness function is dependent of the application
objective (Leung et al., 2003).

The mutation generates �ve new individuals
(mj , j = 1, . . . , 5), which are de�ned by the following
equations (Araújo et al., 2007):

m1 = xr1,G + F (xr2,G − xr3,G), (3)

m2 = xbest,G + F (xr1,G − xr2,G), (4)

m3 = xr1,G +F [(xr2,G−xr3,G)+ (xr4,G−xr5,G)],
(5)

m4 = xbest,G+F [(xr1,G−xr2,G)+(xr3,G−xr4,G)],
(6)

m5 = xk,G +λ(xbest,G−xk,G)+F (xr1,G−xr2,G),
(7)

where r1 6= r2 6= r3 6= r4 6= r5 6= k are randomly
chosen individuals indexes and best denotes the best
individual index. Term F ∈ [0, 2] and λ ∈ [0, 2] are a
real-valued number which control the ampli�cation of
the difference vectors.

After the generation of the sons through mutation
(Equations (3)-(7)), the son with the best evaluation
(greater �tness value) will be chosen as the son gen-
erated by the mutation process and will be denoted by
vi,G+1.

The crossover process to generate the vectors c1,
c2, c3 and c4 is done with the use of four crossover
operators, which are de�ned by the following equa-
tions (Araújo et al., 2007):

c1 =
vi,G+1 + xk,G

2
, (8)

c2 = pmax(1− w) + max(vi,G+1, xk,G)w, (9)

c3 = pmin(1− w) + min(vi,G+1, xk,G)w, (10)

c4 =
(pmax + pmin)(1− w) + (vi,G+1 + xk,G)w

2
,

(11)
where w ∈ [0, 1] denotes the crossover weight,
max(vi,G+1, xk,G) and min(vi,G+1, xk,G) denote
the vector whose elements are the maximum and the
minimum, respectively, between the gene values of
vi,G+1 and xk,G. The terms pmax and pmin denote
the maximum and minimum possible gene values, re-
spectively.

After the generation of the sons through crossover
(Equations (8)-(11)), the son with the best evaluation
(greater �tness value) will be chosen as the son gener-
ated by the crossover process and will be denoted by
ui,G+1.

The selection operator is responsible for the gen-
eration of the best sons (i.e. the vectors with the best
evaluations). Thus, a greedy selection scheme is used,
and is de�ned as:

xk,G+1 =
{

ui,G+1 if f(ui,G+1) < f(xk,G)
xk,G otherwise .

(12)
If, and only if, the trial vector ui,G+1 yields a bet-

ter cost function value than xk,G, then xk,G+1 is set
to ui,G+1; otherwise, the old value xk,G is retained.
However, it is worth to mention that only one individ-
ual (xk,G+1) is modi�ed in IDE (this factor depends
on the evaluation of the individual ui,G+1), while in
the Standard DE (SDE) all the individuals are modi-
�ed if its �tness is worse than the individuals gener-
ated by the crossover operator.

4 The Hybrid Differential Evolutionary System

The methodology proposed in this paper uses a dif-
ferential evolutionary search mechanism in order to
train and to adjust multilayer perceptrons applied to
time series forecasting. It is based on the de�nition
of the three main elements necessary for building an
accurate forecasting system (Ferreira, 2006; Ferreira
et al., 2007): (i) The underlying information neces-
sary to predict the time series (the minimum number
of time lags adequate for representing the time series),



(ii) The structure of the model capable of representing
such underlying information for the purpose of predic-
tion (the number of units in the ANN structure), and
(iii) The appropriate algorithm for training the model.
It is important to consider the minimum possible num-
ber of time lags in the correct representation of the se-
ries because the model must to be as parsimonious as
possible.

According to this principle, the proposed system,
referred to as Hybrid Differential Evolutionary Sys-
tem (HDES), consists of an intelligent hybrid model
composed of an ANN (multilayer perceptron � MLP)
and an IDE (Araújo et al., 2007), which determines
the the following important parameters: (i) The min-
imum number of time lags to represent the time se-
ries: initially, a maximum number of lags (MaxLags)
is de�ned by the user and the IDE can choose any
number of speci�c lags (particular time lags capable
of a �ne tuned time series characterization) in the in-
terval [1,MaxLags] for each individual of the popu-
lation, (ii) The number of units in the ANN hidden
layer: the maximum number of hidden layer units
(NHiddenMax) is determined by the user and the IDE
chooses, for each candidate individual, the number of
units in the hidden layer (in the interval [1,NHidden-
Max]), and (iii) The training algorithm for the ANN:
RPROP (Reidmiller and Braun, 1993), Levenberg-
Marquardt (Hagan and Menhaj, 1994), Scaled Con-
jugate Gradient (Moller, 1993) and One Step Secant
Conjugate Gradient (Battiti, 1992) are candidates for
the best algorithm for training the ANN and the IDE
de�nes one of these algorithms for each individual in
the population. Figure 2 shows the proposed HDES
scheme.

Figure 2: The proposed HDES.

After model training, when the IDE reaches a
satisfactory solution, the proposed HDES uses the
phase �x procedure from Ferreira (Ferreira, 2006; Fer-
reira et al., 2007), where a two step procedure is
introduced, which tries to adjust time phase distor-
tions that appear in the �nancial time series. Fer-
reira (Ferreira, 2006; Ferreira et al., 2007) shows that
the representations of some series were developed by
the model with a very close approximation between
the actual and the predicted time series (�in-phase�
matching), the predictions of other time series (�nan-

cial time series like) were always presented with a
one step shift (delay) with respect to the original data
(�out-of-phase� matching).

In this way, the proposed HDES uses the statis-
tical test applied by Ferreira (Ferreira, 2006; Ferreira
et al., 2007) (t-test), where it is employed to verify
if the network representation has reached an in-phase
or out-of-phase matching. If this test accepts the in-
phase matching hypothesis, the elected model is ready
for practical use. Otherwise, the method performs a
new procedure to adjust the relative phase between
the prediction and the actual time series. According
to Ferreira (Ferreira, 2006; Ferreira et al., 2007), the
validation patterns are presented to the ANN and the
output of these patterns are re-arranged to create new
inputs that are both presented to the ANN and set as
the output (prediction) target.

The approximation results for both the in-phase
and out-of-phase models are measured and the best
model (greater �tness function) is elected as the �nal
model. It is worth to mention, that according to Fer-
reira (Ferreira, 2006; Ferreira et al., 2007), the phase
�x procedure does not assume that the ANN is like
a random walk model, but it is similarly to a random
walk, that is, the t + 1 prediction is very close to the t
value.

The IDE individuals are evaluated by the �tness
function de�ned by,

fitness =
POCID

1 + MSE + MAPE + NMSE + ARV
(13)

where MSE, MAPE, NMSE, POCID and ARV
are the mean square error, the mean absolute percent-
age error, the normalized mean square error (or U of
Theil Statistics), the prediction of change in direction
and the average relative variance used to ANN per-
formance evaluation, respectively, and were formally
de�ned in (Ferreira, 2006; Ferreira et al., 2007).

The termination conditions for the IDE are,

1. The number of IDE iterations (MaxGer);

2. The increase in the validation error or generaliza-
tion loss (Gl) (Prechelt, 1994): Gl > 5%;

3. The decrease in the training error or process train-
ing (Pt) (Prechelt, 1994): Pt ≤ 10−6.

4.1 IDE Individuals Modeling

Each individual of the IDE population is an ANN
(three-layer MLP). These individuals are represented
by chromosomes that have the following parameters
(ANN parameters): (i) Wij : weights of connections
between the input layer and the hidden layer, (ii) Wjk:
weights of connections between the hidden layer and
the output layer, (iii) b1

j : bias of the hidden layer,
(iv) b2

k: bias of the output layer, (v) NetMod: ANN
model, (vi) NHidden: the number of processing units
in the ANN hidden layer, (vii) NLags: the number of
relevant time lags, and (viii) ANNTrain: the ANN
training algorithm.

Three distinct forms of modeling the ANN are
proposed (NetMod = 1, 2, 3), where each is de-
scribed in the following subsections.



4.1.1 First ANN model
The �rst architecture for modeling ANNs
(NetMod = 1) is given by

yk(t) =
nh∑

j=1

WjkSig

[nin∑

i=1

WijZi(t) + b1
j

]
+ Sig(b2

k),

(14)
where Zi(t) (i = 1, 2, . . . , nin) are the ANN input
values, nin denotes the number of ANN input and nh

is the number of hidden units. Since the prediction
horizon is one step ahead, only one output unit is nec-
essary (k = 1).

4.1.2 Second ANN model
The second model (NetMod = 2) is given by:

yk(t) =
nh∑

j=1

WjkSig

[nin∑

i=1

WijZi(t)+b1
j

]
+b2

k. (15)

4.1.3 Third ANN model
The third architecture (NetMod = 3) is given by:

yk(t) = Sig

{ nh∑

j=1

WjkSig

[nin∑

i=1

WijZi(t)+b1
j

]
+b2

k

}
.

(16)

5 Experimental Results

A set of four real world time series was used as a test
bed for evaluation of the proposed HDES: a �nan-
cial time series (Standard & Poor 500 (S&P500) In-
dex) and two natural phenomena time series (Sunspot
and Brightness of a Variable Star Series). All se-
ries investigated were normalized to lie within the
range [0, 1] and divided in three sets according to
Prechelt (Prechelt, 1994): training set (50% of the
points), validation set (25% of the points) and test set
(25% of the points).

The IDE parameters are the same for all experi-
ments: the number of generations is 103, F = 0.5,
λ = 0.95 and w = 0.9. The IDE population is com-
posed of 10 individuals, where each individual is an
ANN with the maximum architecture: a 10-10-1 Mul-
tiLayer Perceptron (MLP) network, which denotes 10
units in the input layer, 10 units in the hidden layer
and 1 unit in the output layer (prediction horizon of
one step ahead).

Next, will be presented the simulation results in-
volving the HDES model with and without the phase
�x procedure (Ferreira, 2006; Ferreira et al., 2007), re-
ferred to as HDES out-of-phase model and HDES in-
phase model, respectively. For each time series, was
made ten experiments, where the experiment with the
largest validation �tness function is chosen to repre-
sent the prediction model.

In order to establish a performance study, results
previously published in the literature with the TAEF
Method (Ferreira, 2006; Ferreira et al., 2007) on the
same series and under the same conditions are em-
ployed for comparison of results. In addition, exper-
iments with MultiLayer Perceptron (MLP) networks
were used for comparison with the proposed HDES.

In all of the experiments, ten random initializations for
each model (MLP) were carried out, where the experi-
ment with the largest validation �tness function is cho-
sen to represent the prediction model. The Levenberg-
Marquardt Algorithm (Hagan and Menhaj, 1994) were
employed for training the MLP network. For all the
series, the best initialization was elected as the model
to be beaten. The statistical behavioral test for phase
�x was also applied to all the MLP models in order to
guarantee a fair comparison between the models.

5.1 Standard & Poor 500 (S&P500) Index Series

The Standard & Poor 500 (S&P500) Stock Index is a
pondered index of market values of the most negoti-
ated stocks in the New York Stock Exchange (NYSE),
American Stock Exchange (AMEX) and Nasdaq Na-
tional Market System. The S&P500 series corre-
sponds to the monthly records from January 1970 to
August 2003, constituting a database of 369 points.

For the prediction of the S&P500 Index series
(with 1 step ahead of prediction horizon), the proposed
HDES automatically chose the lags 2 and 7 as the rel-
evant lags for the time series representation, de�ned
the second ANN model (Equation 15) with architec-
ture 2-7-1, in which NetMod = 2, NLags = 2 and
NHidden = 7, chose the Scaled Conjugate Gradient
algorithm for ANN training and classi�ed the model
as "out-of-phase" matching. Table 1 shows the results
(of the test set) for all performance measures for MLP
network, TAEF method and the proposed HDES. Fig-
ure 3 shows the actual S&P500 Index values (solid
line) and the predicted values generated by the HDES
model out-of-phase (dashed line) for the 90 points of
the test set.

Figure 3: Prediction results for the S&P500 Index se-
ries (test set): actual values (solid line) and predicted
values (dashed line).

5.2 Brightness of a Variable Star Series

The Brightness of a Variable Star series, or Star series,
corresponds to daily observations in the same place
and hour of an oscillating shine star, constituting a
database of 600 points.

For the prediction of the Star series (with 1 step
ahead of prediction horizon), the proposed HDES au-
tomatically chose the lags 1, 2, 3, 4, 5, 6, 7, 9 and 10 as



Table 1: Results for the S&P500 Index series.
MLP TAEF HDES

In-Phase Out-Of-Phase In-Phase Out-Of-Phase In-Phase Out-Of-Phase
MSE 0.0095 0.0096 7.4290e-4 8.0263e-4 1.4074e-4 1.8708e-5

MAPE 1.0100 1.0103 1.0431 1.0228 1.1229 0.3493
NMSE 0.9166 0.9179 7.2412 7.0883 1.3635 0.1745
ARV 7.2728e-3 7.2875e-3 0.0100 0.0012 1.0893e-2 1.4659e-3

POCID 51.11 50.98 50.54 100.00 50.00 98.87
Fitness 17.3644 17.3101 5.4373 10.9732 14.2961 64.8206

the relevant lags for the time series representation, de-
�ned the second ANN model (Equation 15) with archi-
tecture 9-10-1, in which NetMod = 2, NLags = 9
and NHidden = 10, chose the Levenberg Marquard
algorithm for ANN training and classi�ed the model
as "in-phase" matching. Table 2 shows the results (of
the test set) for all performance measures for MLP net-
work, TAEF method and the proposed HDES. Figure 4
shows the actual Star values (solid line) and the pre-
dicted values generated by the HDES model (dashed
line) for the last 100 points of the test set.

Figure 4: Prediction results for the Star series (test
set): actual values (solid line) and predicted values
(dashed line).

5.3 Sunspot Series
The selected Sunspot series consisted of the total an-
nual measures of the sun spots from the years of 1700
to 1988, constituting a database of 289 points.

For the prediction of the Sunspot series (with 1
step ahead of prediction horizon), the proposed HDES
automatically chose the lags 1, 2, 3, and 4 as the rel-
evant lags for the time series representation, de�ned
the second ANN model (Equation 15) with architec-
ture 4-10-1, in which NetMod = 2, NLags = 4
and NHidden = 10, chose the Levenberg Marquard
algorithm for ANN training and classi�ed the model
as "in-phase" matching. Table 3 shows the results (of
the test set) for all performance measures for MLP
network, TAEF method and the proposed HDES. Fig-
ure 5 shows the actual Sunspot values (solid line) and
the predicted values generated by the HDES model
(dashed line) for the 70 points of the test set.

6 Conclusion

In this paper a Hybrid Differential Evolutionary Sys-
tem (HDES) was presented for time series forecast-

Figure 5: Prediction results for the Sunspot series (test
set): actual values (solid line) and predicted values
(dashed line).

ing. It consists of an intelligent hybrid model com-
posed of an Arti�cial Neural Network (ANN) com-
bined with an Improved Differential Evolution (IDE).
The IDE searches for the relevant time lags for a cor-
rect time series characterization, the number of pro-
cessing units in the ANN hidden layer, the ANN train-
ing algorithm and the modeling of ANN. Initially, the
proposed HDES chooses the most tuned prediction
model for time series representation, thus it performs
a behavioral statistical test in the attempt to adjust
forecast time phase distortions that appear in �nan-
cial time series (Ferreira, 2006; Ferreira et al., 2007).
Hence, the HDES was able to ef�ciently classify if
the time series tends or not to a random walk like
model (Mills, 2003), thus adjusting the model if nec-
essary.

Five different metrics were used to measure the
performance of the proposed HDES for time series
forecasting. It was applied to three real world time se-
ries. The experimental results demonstrated slightly
better performance, for natural phenomena time se-
ries, and better performance, for �nancial time se-
ries, of the proposed HDES model when compared to
TAEF model (Ferreira, 2006; Ferreira et al., 2007). It
was observed that the proposed HDES model obtained
better performance than a random walk model (Mills,
2003) (NMSE<1) and than a heads or tails experiment
(POCID>50) for all analyzed time series, overcom-
ing the random walk dilemma for �nancial time series
forecasting (where the predicted values were shifted
one step ahead the original values). While the HDES
model was able to adjust the time-phase delay, the
MLP models were not capable to produce such cor-
rection behavior although the same procedure was ap-
plied to all the models. A feasible explanation for such
phenomenon is that the phase �x procedure will de-



Table 2: Results for the Star series.
MLP TAEF HDES

In-Phase Out-Of-Phase In-Phase Out-Of-Phase In-Phase Out-Of-Phase
MSE 0.0234 0.8865 1.3852e-4 0.0087 1.3229e-4 3.8207e-3

MAPE 3.1000 27.7194 2.7834 26.7629 2.7698 17.0205
NMSE 0.0632 2.2185 0.0371 2.3149 0.0350 1.0204
ARV 3.3357e-3 0.7482 0.0020 0.6128 1.9438e-3 0.0564

POCID 72.97 66.19 77.39 73.79 77.55 69.86
Fitness 17.4154 2.0320 20.2451 2.4036 20.3710 3.6573

Table 3: Results for the Sunspot series.
MLP TAEF HDES

In-Phase Out-Of-Phase In-Phase Out-Of-Phase In-Phase Out-Of-Phase
MSE 0.9205 1.0163 0.0070 0.0307 9.5353e-3 0.0210

MAPE 37.4100 133.5613 30.0661 82.5523 26.8219 49.4800
NMSE 0.3443 1.3295 0.1763 1.2225 0.3300 0.8493
ARV 0.1418 0.3020 0.1233 0.4125 0.1469 0.3218

POCID 90.00 61.70 84.05 65.21 85.91 80.00
Fitness 2.2603 0.4529 2.6790 0.7652 3.0347 1.5482

pend on the complexity of the prediction model and
on its ability to accurately de�ne the best parameters
to represent the time series.

The phase �x procedure proposed by Fer-
reira (Ferreira, 2006; Ferreira et al., 2007) was able
to correct more ef�ciently the prediction phase of
the proposed HDES model when compared to TAEF
model (Ferreira, 2006; Ferreira et al., 2007). Fur-
ther studies are being developed to better formalize
and explain the properties of the HDES model and
to determine possible limitations of the system with
other �nancial time series with components such as
trends, seasonalities, impulses, steps and other non-
linearities.
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